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ABSTRACT

A stochastic finite element method (SFEM) has been applied to the mid-frequency vibration analysis of
complex structural systems. A frequency domain model reduction strategy is devised using the energy operator
approach. The dominant eigen-subspace of the energy operator adapted to a specified frequency band allows
the construction of a reduced model using the Ritz-Galerkin procedure. Once an efficient reduced model is
constructed, the system parameter uncertainty is performed using SFEM approach. The approach allows
significant computational efficiency in performing system parameter uncertainty analysis. The SFEM approach
utilized is based on an integration of the Karhunen-Loeve and the Polynomial Chaos expansions with the
energy operator methodology. The approach presented avoids the combination of disparate approaches for the
mid-frequency vibration analysis such as the statistical energy analysis (SEA), the traditional modal analysis
(well-suited for high and low: frequency vibration analysis respectively) and thus appears to provide a general
framework for mid-frequency vibration analysis. The emphasis in the paper is on investigating the effect of
system parameter uncertainty on the dynamical response. Firstly, a simple example involving a coupled
uncertain rod system is studied to provide abetter understanding of the formulation. Secondly, the examples of
a capsule and a shell-plate assembly with random joint parameters are investigated using an existing FEM
software.

INTRODUCTION

The traditional modal analysis technique in association with the finite element method (FEM) has been
successfully applied for the linear dynamic analysis in the low frequency range. The success of the method
relies on the fact that the first few structural normal modes primarily constitute the total response. In the higher
frequency range, the statistical energy analysis (SEA) is a popular tool where a large number of resonant
modes contributes to the total response. In this approach, the entire structural system is divided into a number
of subsystems. In the state of dynamic equilibrium, the energy balance equations relate the responses in terms
of total average energy for each subsystem. The parameter sensitivity of the high frequency vibration to minor
deviations is accounted for by modeling the subsystem natural frequencies as Poisson random points along the
frequency axis. However, the applicability of SEA is restricted only to the cases where each subsystem exhibits
uniformly high modal density.

In the medium-frequency range, the situation is complicated by a number of facts: The modal superposition
technique is computationally expensive as a large number of structural mode contributes to the total response,
and various subsystems of the structure display high and low frequency behavior simultaneously not justifying
the application of SEA.

The presence of imperfections and discontinuities significantly influences the response in the mid-frequency
band due to short wavelength vibration features. Furthermore, uncertainty of the coupling parameters among
the subsystems, lack of the precise model of the structure due to incomplete knowledge of the secondary
systems complicate the analysis. As a result, the confidence level in the response prediction becomes
questionable even with very detailed mathematical models based on nominal system parameters in the mid-
frequency band.
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A number of recent studies have addressed the higher frequency vibration problem including the effect of
system parameter uncertainty. Manohar & Adhikari (1998) and Adhikari & Manohar (1999) formulated a
frequency-domain dynamic analysis procedure for a randomly-parametered beam assembly using a frequency
dependent FEM shape functions (see, Fergusson & Pilkey 1993a,b). The random system parameters modeled
as independent Gaussian stochastic processes result in a set of weighted integrals as random variables in the
FEM formulations. Adhikari & Manohar described numerous approaches based on the random eigen-function
expansion method. Vlahopoulos & Zhao (1999) presented a hybrid procedure based on FEM and SEA for the
mid-frequency range vibration analysis. They used SEA to model the subsystems having high modal density
(having several wavelengths of vibration in the frequency band of interest). The subsystems exhibiting only a
few wavelengths of vibration in the excitation frequency band are analyzed using FEM. Langley & Bremner
(1998) recently presented perhaps a similar hybrid methodology based on dividing the total degrees of freedom
into a global set and a local set. In their approach, SEA is used to solve the local degrees of freedom
accounting for the effect of system parameter uncertainty. The solutions of the global degrees of freedom are
sought deterrniiiistically accounting for the presence of the local degrees of freedom in terms of an approach
similar to fuzzy structure theory (Ohayon & Soize 1998). Soize (1 998a,b) presented an approach to construct a
reduced model for linear structural systems by describing the mid-frequency structural dynamics by an energy
operator. Using only the dominant eigen-subspace of the energy operator (symmetric positive definite) adapted
to a fixed frequency band, the reduced model in that specific frequency band is thus constructed. The
modifications of the method to consider the case of a linear structure coupled with internal acoustic cavities are
also reported by Soize (1999) when the structure and the internal acoustic cavity exhibit the mid-frequency and
the low-frequency behavior respectively. The proposed method appears to offer a flexible framework of
analysis by avoiding the hybridization of disparate approaches such as FEM, SEA or fuzzy structure theory for
mid-frequency dynamic analysis. Soize (2000) also proposed a nonparametric model of random uncertainties
for the reduced system using the principle of entropy optimization. Only the knowledge of the global mean
mass, stiffness and damping matrices are considered to obtain the complete probabilistic information of these
matrices using the maximum entropy principle.

The present paper develops a general purpose probabilistic framework that is applicable to large scale built-up
systems. A frequency-domain model reduction strategy is adopted to minimize the computational effQrt in the
mid-frequency band. First introduced by C. Soize, an energy operator adapted to a fixed medium frequency
band whose dominant eigen-subspace allows the construction of a reduced model using a Ritz-Galerkin
method. Consequently, the effect of parameter uncertainties is investigated on the reduced model in the
framework of SFEM. The approach, essentially based on dynamic stiffness methodology, overcomes the need
of determination of the joint statistics of natural frequencies and mode shapes by avoiding the modal
superposition approach. The uncertain system parameters are described by Gaussian random fields. The well-
known Karhunen-Loeve expansion is used to decompose the random fields by a set of Gaussian random
variables. Consequently, a typical response quantity is expanded using a generalized random series known as
Polynomial Chaos expansion. The deterministic matrix equations governing the unknown coefficients of the
Polynomial Chaos expansion is derived and solved. The approach is exemplified through its application to
complex structural systems with parameter uncertainties.

MID-FREQUENCY STRUCTURAL DYNAMICS: DETERMINISTIC CASE

A finite element approximation of the response of a linear time invariant distributed parameter system is given
by,

n

u" (x, 0) = q, (co))N (X)(1

with Ni(x) being the finite element shape functions and qi is the i-th nodal response quantity. Consequently,
the governing equation of motion can be expressed as

A,,q = F,, (2)
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where the dynamic stiffness matrix, A,, is given by

A. =-o92M' +icoD +K, (3)

where M, D,, K, are the mass, damping, stiffness matrices and force vector respectively.

A brief description of the energy operator methodology for the mid-frequency vibration analysis is next
presented (Soize, 1998a,b). The approach is adopted to construct a computationally efficient reduced model in
the mid-frequency range. In this section, only the case of deterministic system parameters is considered.
Subsequently, the extension of the procedure to consider the c.ase of randomly parametered systems will be
discussed.

ENERGY OPERATOR APPROACH

Definition of an Energy Operator

For the continuously parametered linear system under consideration, let M be the mass operator and the
operator valued frequency response function T be defined as A-' . The energy operator over frequency band B,
EB is defined as

EB =. fJ2 Re[T" (a)MT(aw)]dw (4)

Its eigenfunctions satisfies the following equation

EBe= Aiei (5)

The energy operator is a positive-definite symmetric operator which possesses a countable set of decreasing
positive eigenvalues. Consequently, its eigenfunctions form a complete basis by which a finite element
displacement. field can be approximated. Thus, the dominant eigen-subspace of this operator can be effectively
used to construct a reduced model using a Ritz-Galerkin method.

Finite Dimensional Approximation

As the analytical expressions of the eigenfunctions are not generally available, EB is approximated as EB., in
n-dimensional subspace with its eigenfunctions represented by ei. Thus, EB., the projection on the n-
dimensional subspace spanned by the shape functions Ni(x), is expressed as (Soize, 1998)

n

EB, = Z[El ](.,Nj)H N, (6)
i,j=l i

which means that for all g,

n
EB,.g= I[E,] (g, Nj)HN, (7)

i,j=l i,

with inner product operation defined over domain Q2 as

(f,g), - Jfgdx (8)
J
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where

E,(w),=1 JoiRe[At7'M,,A•']do) (9)
)rB

In an FEM framework, these eigenfunctions are approximated as,

en = (10)1=j=l

Consequently, the standard cigenvaluc problem is shown to be transformed into a generalized cigenvalue
problem as given by (Soize 1998a,b)

GE.GP = An GP (11)

where

Gij = (Ni,Nj)H (12)

Representation of the Solution in the Mid-Frequency Range

As previously mentioned, the eigenvalues of the energy operator span the functional space in which the
solution exists. Furthermore, only the first few eigenvectors of the energy operator, adapted to the frequency
band B can effectively represent the solution vectors in that frequency band. Thus, the solution vector can be
approximated by using the first N such eigenvectors as

UNn(X,W)=ZUj(oa)e"(x) (13)

Consequently, equation (2) reduces to

ANU = FN (14)

and

FN = P T F. (15)

The new coordinates U relate to the coordinates q as

q = p T U (16)

where [P] is the (nxN) real matrix whose columns are the N eigenvectors corresponding to the N highest
eigenvalues in equation (11). The operator A, reduces to AN as

AN (w) = PTAn (o.)P (17)

In general, N is much smaller than the original system dimension n, thus demonstrating the efficiency of the
reduced model.
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MID-FREQUENCY STRUCTURAL DYNAMICS: STOCHASTIC CASE

For randomly parametered system, the energy operator becomes a random quantity leading to a random
eigenvalue problem stated in equation (5). In case of such systems, the eigensolution computed in equation
(11) can be viewed as a first order approximation to the mean eigenproblem of the energy operator. As the
energy operator is obtained by a frequency averaging process, it should show milder fluctuations than the
underlying material properties. Furthermore, only the higher order eigenvalues and eigenvectors are expected
to be susceptible to the system randomness. However, we are only interested in the dominant eigen-subspace
of the energy operator. The higher order eigenvalues and eigenvectors are not of interest for the purpose of the
present analysis. These facts justify the approximation made for the eigenvalue analysis. However, once these
eigenvectors have been calculated, the coordinates of the solution with respect to this basis can be expressed
as a random quantity. In the present study, the variability of the system parameters are modeled as stochastic
processes.

Mathematical Characterization of Random Processes

A stochastic process, ae, is a function of n +1 variables with n being the physical dimension and 0 identifies -

its probabilistic dimension. Thus, a typical system parameter modeled as random process is characterized by a
set of basis functions 4 in Hilbert space H,. Consequently, the state of the system modeled also as random
process represented by a set of basis W in Hilbert space HL. Identification of the basis 4 and xV is accomplished
by the Karhuncn-Loeve and Polynomial Chaos expansions, which are presented next.

Karhunen-Loeve Expansion

The Karhunen-Loeve expansion of a random process a takes the following form (Ghanem & Spanos 1991)

a(x,0) = 7(x) + £ (0)0, (x) (18)
i=1

Here i7 denotes the mean process and {i} is a set of orthogonal random variable. {0i(x)} and {,i}are the
eigenvectors and eigenvalues of the covariance function Raa (x, y) of the random process and evaluated as the

solution of the following integral equation (Ghanem & Spanos 1991)

JRaa (x, y)0, (y)dy =2i0, (x) (19)
D

where D defines the spatial dimension over which the process a is defined. If the random process a is
Gaussian, then {(i} form an orthonormal Gaussian vector. The Karhunen-Loeve expansion is mean-square
convergent irrespective of the prodabilistic structure of the stochastic process provided it has finite variance.

Polynomial Chaos Expansion

As the covariance function of a solution process is not known a-priori, the Karhunen-Loeve expansion cannot
be used to expand the solution quantity S(0. Consequently, a typical solution quantity S(6) is expressed by the
Polynomial Chaos expansion (Ghanem & Spanos 1991)

S(O) = TSPj (0) (20)
j=0

where 'j (0) are the multidimensional Hermite polynomials of { }, known as the Polynomial Chaos which

form a complete basis in the space of second order random variables. Thus, the complete probabilistic
description of the solution process S(0) is obtained once the deterministic coefficients Sj are calculated. In
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addition to the representation of the solution process, the Polynomial Chaos expansion can also be used to
characterize non-Gaussian material properties.

Representation of the Stochastic System Equation

Expanding AN in its Karhunen-Loeve expansion (obtained from the stiffness, mass and damping matrices, see
Ghanem & Spanos 1991), the following expressions for the equilibrium equation is obtained,

nkl

EZkA']J = F, (21)
k-O

where

A' = Ak (W)P (22)

Here nkl represents the number of terms retained in the Karhunen-Loeve expansions; 4i are the random
variables obtained from the Karhunen-Loeve expansion, and are Gaussian whenever the material properties are
modeled as Gaussian processes. Consequently, the solution process is approximated by the Polynomial Chaos
expansion as

npc

Uj = Z TI (0)UI (0) (23)
j=O

Here npc is the number of terms retained in the Polynomial Chaos expansions. Substituting the above
expansion into the reduced model equation and performing a Galerkin error minimization procedure leads to,

ij< ý,TjT > ANUJ =< TkFN > (24)
i=0 j=O

where the deterministic coefficients Uj are computed as the solution of the aforementioned matrix equation. It
is worthwhile to mention at this point that the frequency response curve for a fixed value of frequency is a
random variable when the system parameters are modeled as random fields. Furthermore, it becomes a
complex valued random process in its frequency evolution due to presence of damping. The presence of
discrete natural frequencies induces strong non-stationary characteristics of the frequency response functions
with the standard deviation peaking up significantly near the resonance points even with small random
deviations of system parameters. This may potentially affect the extremeg of the frequency response curves
and thus the dynamic response.

NUMERICAL RESULTS

As an example of the foregoing analysis, firstly the dynamical response of a coupled rod system is
investigated. The equation of motion of the rods is described by,

___u a2u ()O
a -[EA(x)au+ C1 () W I= MW)- + CWau (25)

with appropriate initial and boundary conditions. Here EA, m, C, and C 2 are the stiffness, mass, strain-rate
dependent and velocity dependent damping per unit length of a typical rod. The choice of this simple system is
intended to provide a better understanding of the system behavior from the viewpoint of the energy operator
approach. The schematic diagram of the system is shown in Figure 1. The free end of the bar B is excited
externally. In this study, Young's moduli of the rods are assumed to be identical independent Gaussian random
fields with a coefficient of variation equal to 0.05. The autocovariance function of each of the processes is
taken to be of the following form: R(xy)=exp-kYIy ; where b is the correlation length, assumed to be half of the
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length of each rod. Only two terms in the Karhunen-Loeve expansion are used corresponding to the first
Karhunen-Loeve mode for each rod. In the Polynomial Chaos expansion, the first six terms corresponding to a
complete second order expansion, are considered. In the numerical investigation, the following parameters
are assumed: for rod A, the mean EAA = 405284.0 N; mA= 2 0 0 .0 kg; C1A = 30.0 Ns and C2A =30.0 Ns/m2, LA =

100 in; for rod B, the mean EAB = EAA /20; m,&_ mA ; CIB = CIA/ 2 0, C2B = C2A2 0 and LA = 100 m. The number
of the finite elements is taken to be 350 for each rod. Figure 2(a) shows the eigenvalue spectrum of the energy
operator for the frequency band 13-5. rad!s. Figure 2(b) presents the first few eigenvectors of the energy
operator. Note that the eigenvectors fluctuate more rapidly in rod B than in rod A, identifying relatively higher
frequency vibrations in rod B. Figure 2(c) presents the frequency response function at the free end of the rod.
Only the eigenvectors corresponding to the first ten eigenvalues of the energy operator are used to construct
the reduced model. In Figure 2 (c), the top and bottom solid lines represent the mean and standard deviation of
the frequency response curve. The results of the direct Monte Carlo simulations with 100 realizations
performed on the full-scale system is represented by point plots. The results from the Polynomial Chaos
expansion performed on the reduced model are in very good agreement with the Monte Carlo simulations.
Interestingly, only 10 degrees-of-freedom system can now effectively captures the original system behavior
produced by a 700 degrees-of-freedom model.

Next, we consider the example of a capsule which includes two joints. The FEM mesh of the structure is
shown in Figure 3. The total number of elements in the system is 128 with each joint having 16 elements. The
cylindrical section of the capsule has a length of 60 m with radius of 7 m. The capsule and the joints are
modeled as thin shell elements having six degrees-of-freedom in each node. The total number of degree-of-
freedom of the system is 780. The effect of joint stiffness uncertainties on the frequency response function of
the structure is investigated. The following properties of the shell elements are considered: Young's modulus E
= 2x10 11 N/m 2, Poisson ratio v = 0.3, density p = 7500 kg/m2 , shell thickness t = 0.05 m. In all cases, a
proportional damping model for the global matrix is adopted as: D. = aM,, + P3K,. Young's moduli of both the
joints are modeled as independent Gaussian random fields with exponential correlation function as: R(xj,x 2; Yh,

y2)=exp -I x-2 '/blI--I'"-y2Pb 2 where b, and b2 are the correlation lengths of the two dimensional random fields with
coefficient of variation equal to .05. For both the joints, the correlation length in both circumferential and
longitudinal directions are taken to be 20 m. The integral eigenvalue problem resulting from the Karhunen-
Loeve expansion was solved using a standard eigen-analysis software package. Only two terms in the
Karhunen-Loeve expansion and first six term Polynomial Chaos expansion are considered. The damping
coefficients are arbitrarily taken as: ct=10-2 Ns/Kg-mn and P= 10-5 s. Figures 4(a) shows the dominant eigen-
subspace of the energy operator in the frequency band (260-330) rad/s. Figure 4(b) shows the direct frequency
response function (along the outer normal direction) of the node on the junction of the cylinder and the
hemispherical cap (referred to as Case A) as highlighted in Figure 3. In Figure 4(b), the top and bottom solid
lines represent the mean and standard deviation of the frequency response curve obtained using SFEM
performed on the reduced model. The results generated from the direct Monte Carlo simulations (with 100
realizations) performed on the full-scale system is represented by point plots. Again it should be noted that
uncertainty analysis performed on the 10 degree-of-freedom system (being the dominant eigen-subspace)
using SFEM shows excellent agreement with Monte Carlo simulations. The similar results for a node on the
top joint, referred to as Case B (highlighted on Figure 3) is presented in Figures 4(c) and 4(d) for the frequency
band -(910-970) rad/s. From Figure 4(c), the dominant eigenspace of the energy operator is characterized by
first 15 eigenvectors. In Figure 4(d), the top and bottom solid lines show the mean and standard deviation of
the frequency response function generated using SFEM. The point plots represent the direct Monte Carlo
simulation results for 100 realizations for the full-scale system. Note that the reduced model SFEM results
show very good agreement with the Monte Carlo simulations.

Finally, the example of a shell-plate assembly with random connection properties at the junctions between the
shell and plate is considered. Figure 5 shows the FEM mesh of the system. The total number of elements is 114
with each connection having 12 elements. The total assembly is modeled with thin shell elements having six-
degrees of freedom for each node. The total number of degrees of freedom is 756. The cylindrical section has
an outer radius of 2.4 in and a length of 10 in. Both the shell and plate are assumed to have a thickness of
0.05m. The system is assumed to have E = 2x10" N/m 2, Poisson ratio v = 0.3, density p = 7500 kg/m 2. The
same proportional damping models as in the case of the capsule is considered. The uncertainty in the
connections is modeled assuming a stochastic variation of Young's modulus as in the case of the previous
example involving the capsule. Again, only two terms in the Karhunen-Loeve expansion and the first six terms
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in the Polynomial Chaos expansion are considered for the SFEM analysis. In Figure 6(a), the dominant eigen-
space of the energy operator for the frequency band (553-559) rad/s is shown for the case of damping
coefficients: 0=i10,3 Ns/Kg-m and P= 7x]0-7 s and a coefficients of variation of Young's modulus equal to
0.05. A typical frequency response function (for the response along the normal direction) for the node marked
in Figure 5 is presented in Figure 6(b). Similar results are shown in Figure 6(c) and 6(d) for the case with
oc=2xl 0-3 Ns/Kg-m and 3= 10-5 s and coefficients of variation of Young's modulus equal to 0.02. From both
Figures 6(a) and 6(c), it is evident that the reduced model can be constructed using only the first 5 eigenvectors
of the energy operator for the specified frequency band. In Figures 6(b) and 6(d), the top and bottom solid lines
present the mean and standard deviation of the frequency response curve using SFEM. The results of Monte
Carlo simulations performed on the full-scale system with 100 realizations are represented by point plots.
Evidently, the Monte Carlo simulations show excellent agreement with the SFEM results.

CONCLUDING REMARKS

The paper integrates a SFEM approach based on the Karhunen-Loeve and the Polynomial Chaos expansions with an
energy operator-based formalism for the mid-frequency vibration analysis of complex structural systems with parameter
uncertainty. The uncertainties of the system parameters are modeled as Gaussian random fields. The well-known
Karhunen-Loeve expansion is used to decompose the Gaussian random fields into a set of Gaussian random
variables. Consequently, typical response quantities are expanded as Polynomial Chaos expansions. The use of
the reduced model remarkably enhances the computational efficiency of the SFEM. The formulation presented
has been implemented using existing finite element software. Thus, the approach is particularly useful for the
mid-frequency vibration analysis of large scale structural systems in order to investigate the effect of parameter
uncertainty on their responses.
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Figure 1. Schematic diagram for the coupled rod system.
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Figure 2. For the rod. system: (a) The distribution of eigenvalues of the energy operator, (b) First few
eigenvectors of the energy operator, (c) The frequency response function of the system at the free end.
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Figure 3. Finite element mesh for a capsule.
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Figure 4. For the capsule: (a) The distribution of eigenvalues of energy operator in the frequency band (260-
330) rad/s, (b) The frequency response function for Case A, (c) The distribution of eigenvalues of energy
operator in the frequency band (910-970) rad/s, (d) The frequency response function for Case B.
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Figure 5. Finite element mesh for a shell-plate assembly.
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Figure 6. For the shell plate assembly: (a) The distribution of eigenvalues of energy operator for Case A, (b)
The frequency response function for Case A, (c) The distribution of eigenvalues of energy operator for Case
B, (d) The frequency response function for Case B.


